Designing Content for AI Summaries: A Practical Guide for Communicators

There’s a certain irony in admitting this, but I recently struggled to write the introduction to one of my blog posts, “Agent vs Agency in GenAI Adoption: Framing Ethical Governance.” I wanted to frame the topic with a reflection on evolving terminology, a nod to Hamlet, and a meditation on AI’s “nature.” On top of that, I introduced the idea of the “ghost in the machine” only a few paragraphs later. In hindsight, I had written two introductions to the same post without meaning to.

At the time, the ideas felt connected. But when I later ran those paragraphs through an AI summarizer, the summary focused almost entirely on Hamlet’s moral dilemma and the mind–body problem—interesting concepts, certainly, but hardly the point of the post. The AI confidently reported that the blog was “about comparing the adoption of GenAI to Hamlet’s struggle with death.”

Not exactly the message I intended.

To be fair here, the most recent version of Google’s Gemini gave me a much more comprehensive summary. That summary mentions, as I did, “the tensions inherent in adopting Generative AI” and my proposed “governance framework.”

But looking back, I realize I had made two classic mistakes in writing that introduction—mistakes that human readers can forgive with patience but AI summarizers absolutely cannot. First, I opened with a metaphor instead of a clear point. Second, I layered multiple conceptual frameworks (terminology, nature vs. nurture, Hamlet, Koestler, agency) before stating my purpose. I know better. Many of us do. But as I’ve written elsewhere, expertise doesn’t exempt us from the structural pitfalls that now matter more than ever.

That experience became the seed of this post.

If our writing can be so easily misinterpreted by a summarizer—and thus by downstream readers who rely on that summary—then it’s worth rethinking what it means to write clearly and responsibly in an AI-influenced world. Good writing has always been about serving our readers. Now, increasingly, it must also serve the machine readers that bridge the gap between our content and those readers.

In this post, I explore why AI summarizers can distort meaning, how machines “read” what we write, and how we can design content that preserves accuracy, nuance, and intent—even after it’s digested by AI. (Note: Some content in this blog post was generated by ChatGPT.)

Read more

Leveling an Editorial Eye on AI

A colleague and I once pioneered using levels of edits to help manage the workload through our content department at a large high-tech firm. We rolled out the concept and refined it over time, all in the name of efficiency and time to market. What we were really trying to do was save our sanity.

We failed.

Or rather, the whole endeavor of developing and releasing educational content through a single in-house unit failed. All the work—from course design to release—was eventually outsourced. But I learned something valuable from the experience. (And I hope others did, too.)

You can’t outsource quality.

I think that’s as true in today’s world of generative AI as it was “back in the day” when I was a technical editor. But how does editorial refinement work in today’s hungry market for “easy” content? Let’s look at how it used to work, how people would like it to work, and how it might work better.

Read more